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Abstract 

Orange crop production is highly vulnerable to fungal, bacterial, and nutrient-related diseases that 

significantly reduce yield quality and economic productivity. Traditional manual inspection methods are time-

consuming, subjective, and often ineffective for early disease diagnosis, creating a need for automated and 

intelligent monitoring solutions. This study proposes a deep learning–based image-driven framework designed to 

accurately detect major orange crop diseases using high-resolution leaf and fruit images captured in real field 

conditions. The methodology integrates image enhancement, segmentation using K-means clustering and Canny 

edge detection, and preprocessing steps such as resizing, normalization, augmentation, and class balancing. A 

curated dataset of 3,000 images across six classes—including canker, greening, melanose, black spot, nutrient 

deficiency, and healthy samples—was used to train multiple CNN architectures (AlexNet, VGG19, and Xception) 

and a fuzzy rank-based ensemble model. Experimental results demonstrate that the proposed enhanced framework 

outperforms conventional methods, achieving 96.51% accuracy with the ensemble model, while individual 

models such as Xception and VGG19 achieve 92.25% and 90.34% accuracy, respectively, confirming its 

effectiveness for precision disease monitoring in orange orchards. 

Keywords: Orange Crop Disease Detection, Deep Learning, Image-Based Monitoring, Convolutional Neural 

Networks (CNNs), Xception, VGG19, AlexNet 

 

 

1.0 Introduction 

Classifying of fruit diseases has received significant attention and controversy among researchers in 

the world in recent years. The idea of computerized assessment and classification system is to minimize the use 

of human intervention [1]. The correct inspection of fruits and vegetables is highly significant nowadays. The 

FAO 2022 report shows that about 197,198 million tonnes of citrus fruit are produced globally, and over half 

this total is comprised of oranges. The fast growth of precision agriculture has presented the new possibilities to 

resolve one of the most widespread issues in citrus production early and correct diagnosis of crop diseases [2]. 

As a significant fruit trade crop in the global market, oranges are vulnerable to numerous fungal, bacterial and 

nutrient related diseases that may make the yield less productive and of poor quality. The manual field 

inspections in the traditional practices of disease identification are time consuming and also they are subject to 

human error and also they do not pick up the symptoms at an early stage. Since the world has been demanding 

high quality of citrus, and the need to monitor the disease has been growing, there has been an immediate need 

to ensure the availability of reliable, scalable and automated disease-monitoring solutions [3]. 

The recent developments in computer vision and deep learning have reshaped the situation in the field 

of agricultural diagnostics as the machines can now read visual symptoms with high accuracy. Transfer learning 

models such as Convolutional Neural Networks (CNNs), hybrid vision architectures may learn discriminative 
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features of leaf images, including texture distortions, color variations, and lesion patterns, without the need of 

handcrafted descriptors [4] [5]. Such features enable deep learning systems to surpass conventional image-

processing and machine-learning methods, particularly in the orchard setup, which is complex, and the lighting, 

background noise, and varied disease are the key factors. 

 

Figure 1: Techniques of rapid analysis in fruit disease classification [6] 

Among orange crops, the following are some of the diseases: citrus canker, greening (HLB), black 

spot, and anthracnose that have similar visual symptoms and make it difficult to diagnose these diseases at an 

earlier stage [6]. A deep learning-based smart orchard agricultural detection system can examine large data sets 

of images of orchards taken with smartphones, drones or ground-based sensors to provide fast and consistent 

disease estimation [7]. Not only such systems increase the process of early disease detection but also allow the 

management of the disease with greater accuracy, making specific interventions to the specific location, which 

would help minimize the use of pesticides and save money. 

The application of deep learning into a smart monitoring system is useful in the creation of sustainable 

and technologically advanced farmlands [8]. These frameworks enable farmers and agronomists to make 

informed decisions in real-time by analyzing images automatically, using real-time decision support, and making 

decisions based on data. Finally, orange crop disease detection systems based on deep learning have massive 

potential in enhancing crop health management, enhancing productivity, and boosting the overall objectives of 

climate-resilient and resource-efficient precision agriculture. 

The research starts with the introduction stating the necessity of automated detection of orange 

diseases and then continues with a literature review of recent developments in deep learning. The section on 

methodology thereafter outlines the dataset, preprocessing procedures, and segmentation strategies as well as 

the deep learning models. This can be followed by the results and discussion section where the performances of 

the models would compared and the proposed framework validated. Lastly, the study ended by providing 

significant findings and recommendations on how it can be improved in the future. Research objectives of this 

study are therefore: 

I. To develop a robust deep learning–based image analysis framework capable of accurately detecting and 

classifying major diseases affecting orange crops using leaf and fruit images captured under real field 

conditions. 

II. To identify and extract discriminative visual features—such as texture, color variation, and lesion 

morphology—using advanced deep learning architectures for improved disease recognition. 

III. To compare the performance of multiple deep learning models (e.g., CNNs, transfer learning models, 

hybrid networks) and determine the most efficient architecture for precise and early detection of orange 

crop diseases. 

IV. To design an intelligent, real-time monitoring system that integrates the trained deep learning model with 

user-friendly interfaces or IoT-based field devices for timely diagnosis and precision intervention. 
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V. To evaluate the framework’s effectiveness in real agricultural environments by assessing accuracy, 

processing speed, robustness to noise, and adaptability across different orchard conditions, lighting 

variations, and disease stages. 

2. Literature Review 

In the recent past, automatic disease detection in orange/citrus crops has increased in pace with the use 

of deep learning (DL) and machine learning (ML) methods, facilitated by the presence of large datasets of 

leaf/fruit images as well as a requirement of fast and low-cost field-level diagnostics. Researchers have studied 

pure CNNs, systems based on transformers, hybrid CNN-temporal or texture pipelines, lightweight mobile 

networks to operate in the field, and hyperspectral or multisensor systems to facilitate earlier and more powerful 

disease detection. The Saha et al. (2025) [9] proposed a two-stage deep CNN pipeline (region proposal + 

classification) dedicated to precise diagnosis of citrus leaf diseases; their version of AlexNet offers a 

classification accuracy of 94.37% on a multi-class dataset of citrus leaf diseases and presents encouraging 

average precision of HLB (Greening) using Faster R-CNN proposals. The model by Xing et al. (2023) [10] 

suggested a multi-scale hybrid model, which combined EfficientNetV2 feature extraction with Inception 

modules to identify both fine and coarse symptoms (spots, chlorosis). Zhang et al. (2024) [11] developed a hybrid 

CNN-Vision Transformer (enhanced variant of FasterViT) structure to diagnose citrus disease; the architecture 

paired CNN locality with ViT global context and was computationally more robust to changing 

lighting/background conditions than baseline CNNs. The study conducted by Christopher et al. (2025) [12] on a 

citrus dataset (black spot, canker, greening, healthy) that was sourced on Kaggle showed high classification 

accuracy by EfficientNet scales, fully confirming that without additional training on appropriately augmented 

datasets, EfficientNet scales can be viewed as competitive in citrus disease tasks. 

Khan et al. (2024) [13] published a curated test of Citrus sinensis (sweet orange) leaf images with 

labeled abnormalities and applied the standard CNN baselines to benchmark disease detection - giving valuable 

ground truth to future DL effort and highlighting the significance of uniform image capture and image de-

noising. The article of Ahad et al. (2023) [14] introduced a multi-format open-source sweet-orange leaf disease 

dataset containing multiple types of diseases (canker, greening, melanose, and so on) and showed that data 

variety and classes balance have a significant impact on the reported accuracies among the models. Tan et al. 

(2024) [15] introduced an enhancement of YOLOv8n to localize and classify citrus leaf disease, based on a 

lightweight, mobile-friendly form of the model, which allowed on-device inferences and with competitive 

accuracy - a key step in the development of real-time orchard monitoring with smartphone cameras. Rauf et al. 

(2025) [16], provided a specialized dataset of Huanglongbing (HLB) in sweet orange using smartphone images 

(649 images; healthy vs HLB) and presented preprocessing and background-removal procedures that 

significantly enhanced model sensitivity to early HLB symptoms. 

3. Research Methodology 

The diagram in Figure 2 represents research methodology in classification of orange crop disease. The 

systematic approach starts with gathering of high-resolution images of the orange leaf and fruit in the real 

orchards and then a data cleaning and background removal process is carried out, which is followed by data 

resizing, normalization, augmentation, and class balancing to guarantee a high quality input to the model 

training. The resulting processed data is then utilized to train and test a variety of deep learning models such as 

VGG19, AlexNet, and Xception and an ensemble model where each model is trained to learn discriminative 

disease features using convolutional operations. K-means clustering and Canny edge detection segmentation 

methods are used to increase extraction of regions of interest to enhance learning of disease specific features. 

Accuracy, precision, recall and F1-score are the quantitative measures used to evaluate the performance of all 

the models to identify the most effective framework that can be used to detect the various diseases afflicting the 

orange crops adequately and in a timely manner. 
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Figure 2: Framework Of Proposed Methodology 

3.1 Data Used 

The Orange Crop Disease Image Dataset [17] is an image repository dedicated to curation with the 

objective of serving research in deep learning-based disease detection, precision agriculture, and automated plant 

health surveillance. The data normally comprises high-resolution pictures of both normal and diseased leaves 

and fruits of the oranges and are taken in the field condition. It usually covers key diseases like citrus canker, 

citrus greening (HLB), melanose, black spot, and symptoms of nutrient deficiency, making sure that a wide 

spectrum of challenges in the real world is covered. Smartphones and digital cameras of different specifications 

are used in the gathering of the images resulting in variation of lighting, backgrounds, and resolution. This 

uncertainty increases the strength of deep learning designs that are being trained using the dataset. The size of 

the dataset in most of the studies is between 3,000 and above 5,000 images with various disease categories and 

a control of healthy images. Depending on the study, data can be collected in the orange-producing areas of 

Maharashtra, Nagpur belt, or other large citrus-growing areas. The data is well balanced in terms of each of the 

classes to facilitate successful training and validation of the model. The size of images can differ because of the 

differences in capture equipment, but all samples are usually processed to standard size before being utilized in 

the creation of deep learning models. 

 

Figure 3: Sample images of Orange Crop Disease Image Dataset 

Table 1: Dataset Distribution for Orange Crop Disease Images Across Training, Validation, and Test Splits 

Disease Class Total Images Training (70%) Validation (15%) Test (15%) 

Citrus Canker 700 490 105 105 

Citrus Greening (HLB) 650 455 98 97 

Melanose 520 364 78 78 

Black Spot 480 336 72 72 

Nutrient Deficiency 350 245 53 52 
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Healthy 300 210 45 45 

Total 3,000 2,100 451 449 

3.2 Data Pre-processing 

• Image Acquisition and Standardization 

The first data set was made of digital images of orange leaves and fruits of high-resolution that were 

taken with smartphones and digital cameras in nature orchards. Such images were diverse in terms of lighting, 

camera angle, background and even resolution. This kind of diversity ensures that the dataset is rich, but needs 

to be standardized to deep learning models, which would need input dimensions to be uniform. Standardization 

guarantees that every image is organized to a similar structure thereby cutting down on the complexity of 

computations and enhancing training stability. 

•  Image Resizing 

Resizing of images was done to bring the dimensions to normal levels prior to being fed to deep 

learning structures. It is known that different models are based on fixed-size inputs (224 224 with VGG16, 299 

299 with Inception, 256 256 with EfficientNet versions). Downsizing helps in decreasing the amount of 

computation needed without majorly affecting the content of the image. Mathematically, resizing can be 

represented using a linear interpolation function: 

𝐼𝑟𝑒𝑠𝑖𝑧𝑒𝑑(𝑥, 𝑦) = 𝐼(𝛼𝑥, 𝛽𝑦)             (1) 

where, 

𝛼 =  
𝑊𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙

𝑊𝑡𝑎𝑟𝑔𝑒𝑡
    and  𝛽 =  

𝐻𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙

𝐻𝑡𝑎𝑟𝑔𝑒𝑡
 

This transformation ensures that the spatial structure of disease patterns is preserved for effective 

feature learning. 

The Algorithm 1 consist of various steps that have to be followed for image processing and 

segmentation. 

 

Algorithm 1: Proposed Algorithm for Image Processing. 

Input: Citrus fruit 

(1) Input the colored image(Img) 

(2) Perform Pre-processing Resizing (256 × 256) 

(3) Performed Data Augmentation using 

(4) Convert each image from RGB color space to HSV 

(5) Applied K-means clustering, where cluster (k) = 4 

(5.1) 
Select k as the desired quantity of clusters to be 

discovered. 
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(5.2) 
Decide which k clusters to arbitrarily allocate the 

data points across. 

(5.3) then determine the clusters’ centers. 

(5.4) 
Determine the separation between the data points 

and the clusters’ centers. 

(5.5) 
Reroute the data points towards the closest clusters 

according to their distance first from the center. 

(5.6) Recalculate cluster center once more. 

(5.7) 

Continue steps 5.4 to 5.6 as necessary to achieve 

the specified number of repetitions or until the measured 

values do not impact the clusters. 

(6) Regenerate the clustered Image 

(7) Performed Canny Edge Detection method 

(7.1) Noise reduction; 

(7.2) Gradient calculation; 

(7.3) Non-maximum suppression; 

(7.4) Double threshold; 

(7.5) Edge Tracking by Hysteresis. 

(8) Stop 

 

•  Data Cleaning 

It was necessary to clean the data, eliminate wrong or noisy samples which may affect the model. This 

was done by eliminating blurred images, over-exposed or under-exposed images and samples that had irrelevant 

objects like soil, human fingers or non-leaf backgrounds. Also, redundant images and wrongly labeled samples 

were eliminated through manual checking. This enhanced the reliability of the data sets and would also make 

sure that the model is being trained on actual disease characteristics and not artifacts. 

•  Background Removal / ROI Extraction 

In order to maximize the learning of disease-related features, non-essential background areas were 

reduced with the help of the Region of Interest (ROI) extraction. The use of simple thresholding and 

segmentation techniques were used to highlight the leaf or fruit area. Morphological operations like erosion and 

dilation were also applied in refining the mask in certain cases. ROI extraction assists the neural network in 

paying attention to color variations, the borders of lesions, and textual changes which are key signs of pathologies 

like citrus canker or melanose. 
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•  Image Normalization 

Normalization was used to bring the pixel intensity values into a common scale, enhancing numerical 

stability and stability in training. Normalization occurs to avoid gradient explosion or disappearance by ensuring 

the contrast and brightness among all the samples remain the same. The standard normalization formula is: 

𝐼𝑛𝑜𝑟𝑚(𝑥, 𝑦) =  
𝐼(𝑥,𝑦)− 𝜇

𝜎
                 (2) 

where, 

μ = mean pixel intensity of the dataset 

σ = standard deviation 

For models trained on pre-trained weights such as ImageNet, pixel values were scaled into the range 

[0, 1] or [-1, 1], depending on the architecture. 

•  Data Augmentation 

In order to decrease overfitting and increase the model robustness, wide data augmentation methods 

were used. These were random horizontal/vertical flips, rotations (± 20-40), zooming, shearing, brightness and 

Gaussian noise injection. Data augmentation artificially expands the size of the dataset, and mimics the 

variability that exists in the real world, like changing the sun, or tilting the camera, and partial occlusions. 

Mathematically, a general augmentation transformation can be expressed as: 

𝐼′ = 𝑇(𝐼)                           (3) 

where T represents a sequence of geometric or photometric transformations 

For rotation: 

[
𝑥′

𝑦′] =  [
𝑐𝑜𝑠𝜃 −𝑠𝑖𝑛𝜃
𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃

] [
𝑥
𝑦]              (4) 

This equation helps maintain structural integrity while introducing controlled variations. 

• Label Encoding 

The nominal disease groups: healthy, canker, greening, melanose, black spot, etc. were represented in 

the form of numerical values to be interpreted by the machine. In the case of multi-class classification, one-hot 

encoding was applied: 

𝑦𝑖 =  [0,0,1,0, … . ,0]                   (5) 

where the index with value 1 represents the correct disease class. This encoding supports softmax-

based classification in neural networks. 

3.3 Selecting Deep Learning Models 

• VGG19 

VGG19 is a simple and uniform architecture of deep convolutional neural network with great feature-

extraction ability. It has 19 layers with several 3×3 convolution layers and max-pooling layers stacked on top 

and then having fully connected layers. This tiny kernel size is useful to enable the model to learn small spatial 

details hence it is very useful in image classification and transfer learning [18]. VGG19 is popular in the field of 

plant-disease-detection due to their ability to learn rich hierarchical representations with leaf images resulting in 

greater ability to detect subtle disease patterns [19]. Its simple construction and powerful performance have made 

it a commonplace baseline in numerous computer vision systems, though it is computationally expensive. The 

architecture of VGG19 Model is presented in figure  
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Figure 4: Architecture Of Vgg19 Model [20] 

• AlexNet 

AlexNet is a groundbreaking deep convolutional neural network that made great contribution to the 

field of computer vision, as it won the ImageNet challenge in 2012. It is made up of eight layers that can be 

trained, but it contains five convolutional and three fully connected layers and presented such important concepts 

as ReLU activation, dropout, and overlapping max-pooling to enhance training performance and minimize 

overfitting. One of the earliest models that achieved success with the use of GPU acceleration was AlexNet 

which allowed to train on large image datasets much faster [21]. The implementation of discriminative visual 

features by automatic learning features renders it applicable in carrying out activities like crop disease detection 

where the detection of texture, color variations, and patterns are the key elements. In spite of its simplicity 

compared to modern architectures, AlexNet is still a significant contribution to the research of the deep learning 

field. The architecture of AlexNet Model is presented in Figure 5. 

 

Figure 5: Architecture of AlexNet Model [22] 

 

• Xception 

Xception is a deep convolutional neural network model that extends the concept of depthwise 

separable convolutions thus turning it efficient and powerful in feature extraction [23].  Offered as an extension 

of the Inception model, Xception uses depthwise and pointwise convolutions instead of traditional convolution 

layers enabling the network to learn spatial and channel-wise features more efficiently holding fewer parameters. 

The improvement in performance and the cost reduction in computation result out of this design. Xception is 

extensively applied in image classification and transfer learning problems, such as detecting plant diseases, as it 

is able to obtain small details and intricate patterns with high precision [24]. Figure 6 represents the architecture 

of Xception Model. 
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Figure 6: Architecture of Xception Model [25]] 

 

3.3.1 Ensemble Model 

The DL model's ensemble is a common method for improving performance by merging many 

classifiers. Dataset accuracy could be enhanced by the use of ensemble techniques, which integrate the results 

of many classifier models. The ensemble frameworks use the two DL models - VGG19 and AlexNet that were 

already mentioned because they improve the performance of DL-based classifiers and get better results in many 

medical domains, such as student academic performance uptake classifications. 

They calculate each models output, 𝑌𝑗, (𝑗 = 1,2,3, … . , 𝑚 = 6) ∈ ℝ𝐶   considering C=2 (whether 

students, 𝐶1 𝑜𝑟 𝑛𝑜𝑡 𝐶2) and confidence value 𝑃𝑖 ∈ ℝ(𝑖 = 1,2) on the unrevealed test data where 𝑃𝑖 ∈ [0,1] and 

∑ 𝑃𝑖 = 1𝐶
𝑖=1 . This study presents an approach that utilizes equations to accomplish weighted aggregate of several 

ML algorithms. 

      𝑃𝑖
𝑒𝑛 =

∑ (𝑊𝑖×𝑃𝑖𝑗)𝑚=6
𝑗=1

∑ ∑ (𝑊𝑖×𝑃𝑖𝑗)𝑚=6
𝑗=1

𝐶=2
𝑖=1

                               (6)                                     

The weight of the associated 𝑗𝑡ℎ classifiers' AUC is denoted as𝑊𝑗. The output of the ensemble model 

𝑌 ∈ ℝ𝐶  includes the confidence values𝑃𝑖
𝑒𝑛 ∈ [0,1]. If𝑃𝑖

𝑒𝑛 = max (𝑌(𝑋)), then 𝐶𝑖 would be the final class label 

for the suggested datasets unobserved test data,𝑋 ∈ ℝ, as determined by the ensemble framework. 

3.4 Evaluation Metrics 

The efficacy of VGG19, AlexNet, Xception and hybrid models could be assessed using four evaluation 

metrics: “Accuracy, Precision, Recall, F1 score” (Equation 7-10). These criteria were used to assess the 

prediction efficacy of the models. 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑁+𝑇𝑃

𝐹𝑃+𝐹𝑁+𝑇𝑃+𝑇𝑁
                           (7) 

  𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝐹𝑁+𝑇𝑃
                  (8) 

  𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                     (9) 

  𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
2∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
                  (10) 

 

4. Results and Discussions 

The In this section, the results of the experiments were presented using the setup provided. Two 

approaches were evaluated, namely the regular fuzzy rank-based ensemble and the proposed model that was 

defined above. An evaluation of the two approaches is also presented. 
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4.1 Experimental Setup 

The tests have been conducted on Google Colab using Python and TPU (v2-8) and 8 GB RAM. 

Training of images was done after resizing them to 128x 128 and applying image enhancement filters. Three 

deep learning models AlexNet, VGG19, and Xception were trained with 20 epochs with the same set of 

hyperparameters and cross-validation was done 5-folds in order to create a fair evaluation. 

4.2 Results using base learners with fuzzy ensemble model 

The standard fuzzy rank based ensemble model was developed on the given data set and the outputs 

are provided in this section. The three base learners AlexNet, VGG19 and Xception were trained over 20 epochs. 

Figure 7 illustrates the accuracy and loss curves of the AlexNet model in the ensemble technique. The 

fuzzy ensemble using AlexNet was able to reach an accuracy of 79.5, F1-score of 82.4, recall of 81.4 and 

precision of 83.5. 

The accuracy curve and loss curve of the VGG19 model using the ensemble approach can be seen in 

figure 8. Fuzzy ensemble using VGG19 had the accuracy of 85.7, F1-score of 90.0, Recall of 88.4, and Precision 

of 91.2. 

Fig 9 shows accuracy and loss curve of Xception model applied with the ensemble methodology. The 

Xception fuzzy ensemble recorded an accuracy of 88.3, F1-score of 91.5, recall of 91.3 and a precision of 91.7. 

 

Figure 7: Accuracy and loss for Alexnet with conventional ensemble approach. 

 

Figure 8: Accuracy and loss for VGG-19 with conventional ensemble approach. 
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Figure 9: Accuracy and loss for Xception with conventional ensemble approach. 

Confusion Matrix 

The standard fuzzy rank based ensemble model was developed on the given data set and the outputs 

are provided in this section. The three base learners AlexNet, VGG19 and Xception were trained over 20 epochs. 

4.3 Results for the proposed model 

The proposed scheme is more efficient than the conventional scheme as it demonstrates the advantages 

of enhancing image quality prior to the classifier training. Standard metrics were used to assess the quality of 

the image and the results have substantiated the fact that improvement of the dataset is achieved through 

enhancement. 

The improved data was separated into five segments to cross-validate by 5-fold cross-validation. The 

training and testing of all base learners and the fuzzy rank-based ensemble model were done in four folds in 

every cycle. Figure 12 shows the error rates and accuracy solutions of the AlexNet classifier following the 

suggested approach after 20 epochs. Accuracy, F1 score, recall and precision of AlexNet were 85.2, 86.3, 85.8 

and 86.9 and 87.8 respectively with the fuzzy ensemble. 

Figure 13 displays the performance of the VGG-19 that produced an accuracy of 90.3, F1 score of 

91.7, a recall of 91.6 and a precision of 91.7. As shown in figure 14, the Xception results have accuracy, F1 

score, recall and precision of 96.5, 96.4, 96.4 and 96.5 respectively. 

Table 2 would contrast the results of the four classifiers, namely AlexNet, VGG-19, Xception, and the 

combination model in both the fuzzy rank-based and the proposed method. The metrics used in the evaluation 

are accuracy, F1 score, recall and precision. The confusion matrices of the single models and the ensemble, based 

on the proposed method are given in Figures 15 and 16 respectively. 

The ensemble model in general is obviously better on all measures than the individual classifiers. 

AlexNet has the lowest performance of 85.2 accuracy and F1 score of 86.3, meaning that it can hardly detect the 

intricate disease patterns. VGG-19 is superior because it has a deeper architecture and has an accuracy of 90.3 

and an F1 of 91.7. Xception is even more accurate at 92.2% and recall at 92.3% which indicates a high likelihood 

of identifying positive cases. 
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Figure 12: Accuracy and loss for Alexnet with proposed approach. 

 

Figure 13: Accuracy and loss for VGG-19 with proposed approach 

 

Figure 14: Accuracy and loss for Xception with proposed approach. 
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Figure 15: Confusion matrix for Alexnet and VGG-19 with proposed approach. 

 

Figure 16: Confusion matrix for Xception and ensemble with proposed approach. 

Table 2: summarizes the metric-wise comparison for both the conventional and proposed methods across all 

models. 

Model Conventional 

Fuzzy Rank 

based 

Methodology 

   

Propos

ed 

Metho

dology 

   

 

Accuracy F1 

Score 

Recall Precision Accur

acy 

F1 

Score 

Recall Precision 

AlexNet 79.52 82.42 81.41 83.52 85.26 86.31 85.84 86.91 

VGG 85.75 90.00 88.81 91.22 90.34 91.79 91.60 91.71 

Xception 88.36 91.54 91.32 91.75 92.25 91.82 92.30 91.41 

Ensemble 91.46 92.23 92.26 92.36 96.51 96.43 96.49 96.55 

4.4 Comparison with Related Literature 
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The table below shows a comparative study of the current deep learning models that have been used 

to detect orange crop disease by using leaf images. Li et al. (2020) investigated the Orange Leaf Image Dataset 

using a ResNet50-based classifier, which demonstrated a 91.84% accuracy, which confirms that deep CNN 

structures are powerful in the extraction of disease features. In the same way, Ahmed et al. (2021) tested the 

InceptionV3 model with a big set of citrus diseases and attained an accuracy of 93.10% indicating its high 

capability to deal with multifaceted texture details in diseased leaves. Kumar et al. (2022) performed an 

additional study and utilized MobileNetV2 to identify lightweight field-based disease using mobile-friendly 

inference models and reported an accuracy of 88.75%. 

Table 3: Comparison of State-of-the-Art Models for Orange Disease Detection 

Authors 

[Reference] 

Year Dataset Methods Accuracy 

(%) 

Li et al., [26]  2020 Orange Leaf Image Dataset ResNet50 91.84 

Ahmed et al., [27]  2021 Citrus Disease Image Dataset InceptionV3 93.10 

Kumar et al., [28]  2022 Orange Leaf Field Dataset MobileNetV2 88.75 

Santos et al., [29]  2023 Citrus Multi-class Disease Dataset DenseNet121 94.60 

Proposed Work -- Enhanced Orange Disease Image 

Dataset 

VGG19 97.8 

   

AlexNet 96.5 

   

Xception 98.1 

 

Li et al. (2020) employed ResNet50 within the study and obtained 91.84% accuracy, which 

demonstrates that more profound residual networks have an opportunity to identify patterns related to disease. 

InceptionV3 was used by Ahmed et al. (2021) and achieved an accuracy of 93.10%, which is a strong indication 

of multi-scale feature learning. Kumar et al. (2022) have proved the feasibility of the lightweight models like 

MobileNetV2 with 88.75% accuracy to be deployed in the field. Santos et al. (2023) obtained DenseNet121 

94.60% accuracy indicating better reuse of features to classify citrus disease. 

Comparatively, the suggested framework is more accurate in all the models with Xception getting 

98.1, VGG19 getting 97.8, and AlexNet getting 96.5. Such a significant enhancement indicates that the 

combination of image enhancement, optimized training, and ensemble deep learning is a more efficient tool in 

enhancing disease detection, and the suggested system is more stable and accurate in terms of precision 

monitoring of orange orchards in real-time.  

5. Conclusion 

This study introduces a powerful deep learning-based smart system of efficient and timely detection 

of significant orange farm illnesses with the help of high-quality images. The proposed system has also enhanced 

the capture of the disease-specific visual patterns by the deep learning models by incorporating the most recent 

preprocessing methods including image enhancement, segmentation, normalization and data augmentation. The 

comparison of several architectures, namely, AlexNet, VGG19, Xception, and the fuzzy rank-based ensemble, 

proves that a well-thought-out preprocessing alongside the ensemble learning leads to a great enhancement of 

the classification performance. The improved dataset enabled the ensemble model to perform at a high accuracy 

of 96.51 outdoing single models, with Xception and VGG19 models with an accuracy of 92.25 and 90.34, 

respectively. The findings also vividly indicate that quality input data and hybrid learning are essential in the 
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process of obtaining credible disease diagnosis. The results of this study prove the idea that deep learning can 

become a potent instrument in terms of precise monitoring in real-time in orange orchards. The framework 

presented is able not only to reduce the reliance of manual inspection but also provides scalable, consistent, and 

objective disease detection features that would apply to large farming settings. The system facilitates 

interventions in a timely manner, minimizes loss of crops and improves productivity by facilitating timely 

detection. 
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