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Abstract:  The strong fuzzy detour μ-distance ∆s(u, v) between two vertices of a connected fuzzy graph G is 

defined as the maximum of the μ-length of all strong paths connecting u and v. We introduce the strong fuzzy 

detour μ-eccentricity, μ-radius, μ-diameter, and μ-center notions. Based on these concepts, we establish some 

properties.  
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1.Introduction 

         Zadeh published a seminal article on fuzzy sets [10] in 1965, which led to fuzzy logic and, consequently, 

fuzzy set theory. A major goal of Zadeh's article was to develop a theory that could be applied to ambiguity and 

imprecision in human thinking, particularly in pattern recognition, information communication, and abstraction. 

According to this theory, the grade of membership of an element in a subset of a universal set should be a real 

number in the closed interval [0, 1]. 

     In 1975, Rosenfeld studied fuzzy relations on fuzzy sets and created fuzzy graphs, which are analogous to 

graph theories. The concepts of connectedness, paths, bridges, clusters, trees, forests, and cut vertices were 

introduced and analyzed. In his work, P.Bhattacharya [1] examined automorphism of fuzzy graphs and 

introduced the concept of centre and eccentricity in fuzzy graphs. Strong arcs in fuzzy graphs and M - strong 

fuzzy graphs were the topics of discussion for K.R.Bhutani [3] and other researchers. 

          In fuzzy graphs, the notion of µ-distance was first presented by Rosenfled [7]. 

 The fuzzy detour    𝜇 – distance and fuzzy detour 𝜇 –centre in fuzzy graph were discussed by A.Nagoorgani and 

J.Umamaheswari [6,7]. In this work, strong fuzzy 𝜇 – distance and strong fuzzy detour 𝜇 – centre have been 

introduced and analogous properties have been presented. A few basic concepts will be reviewed for this 

purpose. 

  

2.   Preliminaries 

 A fuzzy graph 𝐺 =  (𝑉, 𝜎, 𝜇) is a nonempty set together with a pair of functions 
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𝜎 ∶ 𝑉 → [0, 1]and 𝜇 ∶ 𝑉 × 𝑉 →  [0, 1] such that for all 𝑥, 𝑦 in 𝑉, 𝜇(𝑥, 𝑦) ≤ 𝜎(𝑥) ⋀ 𝜎(𝑦). We call 𝜎 the fuzzy 

vertex set of 𝐺 and 𝜇 the fuzzy edge set of 𝐺, respectively. Note that 𝜇 is a fuzzy relation on 𝜎. We will assume 

that, unless otherwise specified, the underlying set is 𝑉 and that it is finite. For convenience, we use the notation 

𝐺 = (𝜎, 𝜇) to represent the fuzzy graph 𝐺 = (𝑉, 𝜎, 𝜇). 

A fuzzy graph 𝐺 = (𝜎, 𝜇) has a path P that is a sequence of unique vertices 𝑢0, 𝑢1,   .  .  .  , 𝑢𝑛 such that 

𝜇(𝑢𝑖−1, 𝑢𝑖) > 0, 𝑖 = 1, 2,   .  .  .  , 𝑛. The path's length is indicated here, n. The definition of P's strength is 

⋀𝑖=1
𝑛  𝜇(𝑢𝑖−1, 𝑢𝑖). In other words, the weight of the weakest edge determines a path's strength. 𝜇∞(𝑢, 𝑣) or 

𝐶𝑂𝑁𝑁𝐺(𝑢, 𝑣) represent the strength of connectedness between two vertices, which is defined as the maximum 

of the strength of all paths between u and v. Any two vertices u, v can be joined by the strongest path, which has 

strength 𝜇∞(𝑢, 𝑣).  A path connecting two vertices makes them connected. 

 Consider a fuzzy graph  𝐺 = (𝜎, 𝜇). In case 𝜇(𝑥𝑦) > 0 and  𝜇(𝑥𝑦) ≥ 𝐶𝑂𝑁𝑁𝐺−𝑥𝑦(𝑥, 𝑦), an edge xy is 

considered strong in G. If for every 1 ≤ 𝑖 ≤ 𝑛., the path : 𝑢 = 𝑢0, 𝑢1,   .  .  .  , 𝑢𝑛 = 𝑣 from u to v is strong, then it 

is referred to as a strong path. Let x, y be two different vertices of a fuzzy graph  𝐺 = (𝜎, 𝜇) , and let 𝐺′ be the 

partial fuzzy subgraph of 𝐺 that results from removing the edge (x,y). 𝐺′(𝜎, 𝜇′), in other words, where 

𝜇′(𝑥, 𝑦) = 0  and 𝜇′ = 𝜇 for all other pairs. If 𝜇′∞(𝑢, 𝑣) < 𝜇∞(𝑢, 𝑣) for some u,v, then (x,y) is a bridge in G. 

Put otherwise, if removing the edge (x,y) weakens the connection between a certain pair of vertices. 

Consequently, (x,y) is a bridge if and only if (x,y) is an edge of every strongest path connecting vertices u, v. 

For each u,v such that 𝑢 ≠ 𝑤 ≠ 𝑣, we say that w is a cutvertex in 𝐺 if  𝜇′∞(𝑢, 𝑣) < 𝜇∞(𝑢, 𝑣) .  

  Stated differently, if the strength of connectivity between any other pair of vertices is diminished by 

eliminating vertex 𝑤. Hence, if and only if vertices 𝑢, separate from 𝑤 exist such that 𝑤 is on every strongest 

path from 𝑢 to 𝑣, then 𝑤 is a cutvertex. In this case, 𝐺′ is either a block or non separable. If 𝐺 doesn't have any 

fuzzy cutvertices, it is referred to as a fuzzy block. 

The 𝝁 – distance[4]𝛿(𝑢, 𝑣)is the smallest 𝜇 – length of any 𝑢 − 𝑣 path, where the 

𝜇 – length of a path 𝑃 : 𝑢 = 𝑢0, 𝑢1,   .  .  .  , 𝑢𝑛 = 𝑣 is 𝐿(𝑃) = ∑
1

𝜇(𝑢𝑖−1,𝑢𝑖)
𝑛
𝑖=1  . The detour 

𝝁 – distance[6] ∆(𝑢, 𝑣)is the longest 𝜇 – length of any 𝑢 − 𝑣 path, where the 𝜇 – length of a path 𝑃 : 𝑢 =

𝑢0, 𝑢1,   .  .  .  , 𝑢𝑛 = 𝑣 is 𝐿(𝑃) = ∑
1

𝜇(𝑢𝑖−1,𝑢𝑖)
𝑛
𝑖=1  .  

 In our discussion, we prefer only the strong paths for which the fuzzy detour 𝜇 – distance is defined. 

That is, the fuzzy detour 𝝁 – distance for strong paths is defined to be that distance given by 𝐿(𝑃) =

∑
1

𝜇𝑠(𝑢𝑖−1,𝑢𝑖 )

𝑛
𝑖=1 where 𝑃:𝑢 = 𝑢0, 𝑢1,   .  .  .  , 𝑢𝑛 = 𝑣 and is denoted by ∆𝑠(𝑢, 𝑣). This can also be called strong 

fuzzy detour 𝝁 – distance.That is, the strong fuzzy detour  

𝜇 – distance ∆𝑠(𝑢, 𝑣) between the vertices 𝑢 and 𝑣 is defined as the maximum of the 𝜇 - lengths of all the strong 

paths joining 𝑢 and 𝑣. 

The maximum of the strong fuzzy detour μ - distances from x to any vertex of G is the strong fuzzy detour μ - 

eccentricity, 𝑒∆𝑠
(𝑥), of a vertex x of a fuzzy graph G. The minimum of the strong fuzzy detour μ - eccentricities 

among the vertices of G is the strong fuzzy detour μ - radius of G, or 𝑟𝑎𝑑∆𝑠
(𝐺). The maximum of the strong 

fuzzy detour μ - eccentricities among the vertices of G is the strong fuzzy detour μ - diameter of G or 

𝑑𝑖𝑎𝑚∆𝑠
(𝐺). 

If 𝑒∆𝑠
(𝑣) = 𝑟𝑎𝑑∆𝑠

(𝐺), then a node v in a connected fuzzy graph G is a strong fuzzy detour μ – central node. The 

fuzzy subgraph created by the strong fuzzy detour μ – central nodes of G is referred to as the strong fuzzy detour 

μ – center of G and is symbolically represented as 𝐶∆𝑠
(𝐺).  

 

 



Dandao Xuebao/Journal of Ballistics 
ISSN: 1004-499X 
Vol. 37 No. 1 (2025) 
__________________________________________________________________________________ 
 

307 https://ballisticsjournal.com 

If  𝑒∆𝑠
(𝑣) = 𝑑𝑖𝑎𝑚∆𝑠

(𝐺), then node v in a connected fuzzy graph G is a strong fuzzy detour μ – peripheral node. 

The fuzzy subgraph created by the strong fuzzy detour μ – peripheral nodes of G is referred to as the strong 

fuzzy detour periphery of G, and it is symbolically represented by 𝑃𝑒𝑟∆𝑠
(𝐺). A node v is said to be annular node 

if 𝑟𝑎𝑑∆𝑠
(𝐺) < 𝑒∆𝑠

(𝑣) < 𝑑𝑖𝑎𝑚∆𝑠
(𝐺). 

A complete fuzzy graph is a fuzzy graph 𝐺 = (𝜎, 𝜇) such that 𝜇(𝑢, 𝑣) = 𝜎(𝑢) ⋀ 𝜎(𝑣) for all 𝑢, 𝑣 ∈

𝜎∗. If 𝐺 = (𝜎, 𝜇) is a complete fuzzy graph, then 𝜇∞ = 𝜇. 

 

Fig. 2.1Fuzzy graph with strong edges 

Example 2.1  Let 𝐺 = (𝜎, 𝜇) be a fuzzy graph with 𝜎∗ = {𝑢, 𝑣, 𝑤, 𝑥, 𝑦}. 𝜎(𝑢) = 1, 𝜎(𝑣) = 1/3,  

𝜎(𝑤) = 𝜎(𝑦) = 1/2, 𝜎(𝑥) = 1/4,𝜇(𝑢𝑣) = 1/7, 𝜇(𝑢𝑦) = 1/2,𝜇(𝑣𝑤) = 1/3, 

𝜇(𝑣𝑥) = 1/9, 𝜇(𝑣𝑦) = 1/6, 𝜇(𝑤𝑥) = 1/4 and 𝜇(𝑥𝑦) = 1/8. Note that, the edges (u,y),(v,y),(v,w),(x,w) in 𝐺 

are strong and the strong fuzzy detour 𝜇 – distance between two vertices are as follows. 

 ∆𝑠(𝑢, 𝑦) = 2, ∆𝑠(𝑢, 𝑣) = 8, ∆𝑠(𝑢, 𝑤) = 11, ∆𝑠(𝑣, 𝑥) = 7,∆𝑠(𝑢, 𝑥) =15, ∆𝑠(𝑣, 𝑦) = 6, ∆𝑠(𝑣, 𝑤) = 3, 

∆𝑠(𝑥, 𝑦) =13, ∆𝑠(𝑥, 𝑤) = 4,∆𝑠(𝑦, 𝑤) =9, 𝑒∆𝑠
(𝑢) = 𝑒∆𝑠

(𝑥) = 15, 𝑒∆𝑠
(𝑣) = 8, 𝑒∆𝑠

(𝑤) = 11, 𝑒∆𝑠
(𝑦) = 13. 

 Thus, 𝑟𝑎𝑑∆𝑠
(𝐺) = 8, 𝑑𝑖𝑎𝑚∆𝑠

(𝐺) = 15. Here, 𝑣 is the central node, peripheral nodes are 𝑢 and 𝑥 and 

annular nodes are 𝑤 and y. 

 

3.  Metrics in Strong Fuzzy Graphs 

Theorem 3.1  In a connected fuzzy graph 𝐺, ∆𝑠(𝑢, 𝑣) is a metric. 

Proof : (i)∆𝑠(𝑢, 𝑣) = 0 if and only if 𝑢 = 𝑣 because 𝐿(𝑃) = 0 if and only if the 𝑢 − 𝑣 path 𝑃 has length 0. 

(ii)∆𝑠(𝑢, 𝑣) = ∆𝑠(𝑣, 𝑢) because the reversal of a path is a path and 𝜇 is symmetric. 

It remains only to show that strong fuzzy detour 𝜇 – distance satisfies the triangle inequality, namely, ∆𝑠(𝑢, 𝑣) ≤

∆𝑠(𝑢, 𝑤) + ∆𝑠(𝑤, 𝑣), where 𝑤 is a vertex on the 𝑢 − 𝑣 path.  

Case(i) Let 𝑃1 be the subpath of 𝑃 from 𝑢 to 𝑤 and 𝑃2 be the subpath of 𝑃 from 𝑤 to 𝑣. Then, 

∆𝑠(𝑢, 𝑤) = 𝐿(𝑃1) and ∆𝑠(𝑤, 𝑣) = 𝐿(𝑃2). Now, 𝐿(𝑃) =  𝐿(𝑃1) + 𝐿(𝑃2). Therefore,  

∆𝑠(𝑢, 𝑣) = ∆𝑠(𝑢, 𝑤) + ∆𝑠(𝑤, 𝑣). 

 Case (ii) Suppose the vertex 𝑤 does not lie on the path 𝑃. Let ∆𝑠(𝑤, 𝑥) = 𝐿(𝑅). Then  

∆𝑠(𝑢, 𝑤) ≥  𝐿(𝑃1) + 𝐿(𝑅)and ∆𝑠(𝑤, 𝑣) ≥  𝐿(𝑃2) + 𝐿(𝑅). Therefore, ∆𝑠(𝑢, 𝑣) = 𝐿(𝑃) 
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=  𝐿(𝑃1) + 𝐿(𝑃2) <  𝐿(𝑃1) + 𝐿(𝑅) + 𝐿(𝑃2) + 𝐿(𝑅) ≤ ∆𝑠(𝑢, 𝑤) + ∆𝑠(𝑤, 𝑣). Thus by cases (i) and (ii) we get 

the required triangular inequality. 

Theorem 3.2 Let 𝛿𝑠 and ∆𝑠 represent the 𝜇 - distance and detour 𝜇 – distance respectively in a  fuzzy graph 𝐺. 

Then, for any two vertices 𝑢 and 𝑣 in 𝐺, 0 ≤ 𝛿𝑠(𝑢, 𝑣) ≤ ∆𝑠(𝑢, 𝑣) < ∞. 

Proof : Let 𝑢, 𝑣 ∈ 𝐺. Since 𝛿𝑠(𝑢, 𝑣) is the shortest 𝜇 – distance and ∆𝑠(𝑢, 𝑣) is the longest  

𝜇 – distance, it is obvious that 𝛿𝑠(𝑢, 𝑣) ≤ ∆𝑠(𝑢, 𝑣) and the result follows immediately. 

Corollary 3.3 If 𝑢 and 𝑣 are any two vertices in a connected fuzzy graph 𝐺, then ∆𝑠(𝑢, 𝑣) = 0 if and only if 

𝛿𝑠(𝑢, 𝑣) = 0. 

Theorem 3.4  If 𝐺 is a connected fuzzy graph, then  for any vertex 𝑣 ∈ 𝐺, 

𝑑𝑖𝑎𝑚∆𝑠
(𝐺) − 𝑒∆𝑠

(𝑣) ≥ 𝑡  where 𝑡 is any nonnegative real number. 

Proof :  For any 𝑣 ∈ 𝐺, 𝑒∆𝑠
(𝑣) = 𝑚𝑎𝑥{∆𝑠(𝑣, 𝑥)/ 𝑥 ∈ 𝐺} and 𝑑𝑖𝑎𝑚∆𝑠

(𝐺) = 𝑚𝑎𝑥{𝑒∆𝑠
(𝑣)/ 𝑣 ∈ 𝐺}. 

If 𝑑𝑖𝑎𝑚∆𝑠
(𝐺) = 𝑒∆𝑠

(𝑣), then 𝑑𝑖𝑎𝑚∆𝑠
(𝐺) − 𝑒∆𝑠

(𝑣) = 0; on the other hand, if 𝑑𝑖𝑎𝑚∆𝑠
(𝐺) > 𝑒∆𝑠

(𝑣), then 

𝑑𝑖𝑎𝑚∆𝑠
(𝐺) − 𝑒∆𝑠

(𝑣) > 0. If this positive value is some real quantity, say 𝑡, then the result follows immediately. 

 The following result gives an important relationship between fuzzy detour 𝜇 – radius and 

fuzzy detour 𝜇 –diameter for strong paths of a fuzzy graph which is analogous to the result for all paths in a 

fuzzy graph. 

Theorem  3.5 For any connected fuzzy graph 𝐺, 𝑟𝑎𝑑∆𝑠
(𝐺) ≤ 𝑑𝑖𝑎𝑚∆𝑠

(𝐺) ≤ 2 𝑟𝑎𝑑∆𝑠
(𝐺). 

Proof :By the definition of strong fuzzy detour 𝜇 – radius and strong fuzzy detour 𝜇 –diameter, we can conclude 

that 𝑟𝑎𝑑∆𝑠
(𝐺) ≤ 𝑑𝑖𝑎𝑚∆𝑠

(𝐺). To prove the right hand side inequality, we choose a strong path 𝑃 from 𝑢 to 𝑣. 

Let 𝑦 ∈ 𝑃 be an element of the strong fuzzy detour 

𝜇 –centre of 𝐺. Then, 𝑒∆𝑠
(𝑦) = 𝑟𝑎𝑑∆𝑠

(𝐺). If 𝑥 and 𝑧 be two strong fuzzy detour peripheral nodes of 𝐺, then 

𝑒∆𝑠
(𝑥) = 𝑒∆𝑠

(𝑧) = 𝑑𝑖𝑎𝑚∆𝑠
(𝐺). By triangle inequality, we have  

∆𝑠(𝑥, 𝑧) ≤ ∆𝑠(𝑥, 𝑦) + ∆𝑠(𝑦, 𝑧); that is, 𝑑𝑖𝑎𝑚∆𝑠
(𝐺) ≤ 𝑟𝑎𝑑∆𝑠

(𝐺) + 𝑟𝑎𝑑∆𝑠
(𝐺) = 2 𝑟𝑎𝑑∆𝑠

(𝐺). 

Therefore, the result follows. 

 Next result shows how fuzzy detour 𝜇 – eccentricities of distinct vertices for strong fuzzy graphs can be 

related uniquely. 

Theorem 3.6 If 𝑢 and 𝑣 are any two distinct vertices of  a connected fuzzy graph 𝐺, then 

|𝑒∆𝑠
(𝑢) − 𝑒∆𝑠

(𝑣)| ≤ ∆𝑠(𝑢, 𝑣). 

Proof∶ ∆𝑠(𝑢, 𝑣) denotes the maximum of 𝜇 – distances between 𝑢 and 𝑣 such that each edge is strong in the path 

joining 𝑢 and 𝑣. Then, by definition, 𝑒∆𝑠
(𝑢) = 𝑚𝑎𝑥{∆𝑠(𝑢, 𝑥)/ 𝑥 ∈ 𝐺}. For some 𝑦 ∈ 𝐺, let 𝑒∆𝑠

(𝑢) = ∆𝑠(𝑢, 𝑦). 

Then, ∆𝑠(𝑣, 𝑦) ≤ 𝑒∆𝑠
(𝑣). By triangle inequality, we can write 

𝑒∆𝑠
(𝑢) = ∆𝑠(𝑢, 𝑦) ≤ ∆𝑠(𝑢, 𝑣) + ∆𝑠(𝑣, 𝑦) ≤ ∆𝑠(𝑢, 𝑣) + 𝑒∆𝑠

(𝑣). That is, 𝑒∆𝑠
(𝑢) − 𝑒∆𝑠

(𝑣) ≤ ∆𝑠(𝑢, 𝑣). 

Interchanging the roles of 𝑢 and 𝑣, the above inequality can be written as   

𝑒∆𝑠
(𝑣) − 𝑒∆𝑠

(𝑢) ≤ ∆𝑠(𝑢, 𝑣). That is, 𝑒∆𝑠
(𝑢) − 𝑒∆𝑠

(𝑣) ≥ −∆𝑠(𝑢, 𝑣).  Combining these two inequalities, we 

obtain −∆𝑠(𝑢, 𝑣) ≤ 𝑒∆𝑠
(𝑢) − 𝑒∆𝑠

(𝑣) ≤ ∆𝑠(𝑢, 𝑣) which is the required result. 

 

 



Dandao Xuebao/Journal of Ballistics 
ISSN: 1004-499X 
Vol. 37 No. 1 (2025) 
__________________________________________________________________________________ 
 

309 https://ballisticsjournal.com 

4. Strong Fuzzy detour 𝝁 – centre 

 A node 𝑣 in a connected fuzzy graph 𝐺 is a strong fuzzy detour 𝝁 – central node if  

𝑒∆𝑠
(𝑣) = 𝑟𝑎𝑑∆𝑠

(𝐺) and the fuzzy subgraph induced by the strong fuzzy detour 𝜇 – central nodes of 𝐺 is called 

the strong fuzzy detour 𝝁 – centre of 𝐺 and is denoted symbolically by 𝐶∆𝑠
(𝐺). 

A complete fuzzy graph is a fuzzy graph 𝐺 = (𝜎, 𝜇) such that 𝜇(𝑢, 𝑣) = 𝜎(𝑢) ⋀ 𝜎(𝑣) for all  

𝑢, 𝑣 ∈ 𝜎∗. If 𝐺 = (𝜎, 𝜇) is a complete fuzzy graph, then 𝜇∞ = 𝜇. 

Theorem  4.1 The strong fuzzy detour 𝜇 – centre 𝐶∆𝑠
(𝐺) of every strong connected fuzzy graph 𝐺 lies in a 

single block of 𝐺. 

Proof: We prove this theorem by contradiction. Assume that 𝐺 is a strong connected fuzzy graph whose strong 

fuzzy detour 𝜇 – centre does not lie in a single block of 𝐺. Then there exists a cut vertex 𝑤 of 𝐺∗ such that 𝐺∗ −

𝑤 contains the blocks 𝐵1 and 𝐵2 which contain the elements 𝑢 and 𝑣 of 𝐶∆𝑠
(𝐺). Let 𝑢 ∈ 𝐵1 such that ∆𝑠(𝑢, 𝑤) =

𝑒∆𝑠
(𝑤). Let 𝑣 ∈ 𝐵2. Let 𝐵1and 𝐵2 contain  respectively the 𝑢 − 𝑤 strong fuzzy detour and the 𝑤 − 𝑣 strong 

fuzzy detour. Then, ∆𝑠(𝑢, 𝑣) > ∆𝑠(𝑢, 𝑤), because 𝑤, being a cutvertex, lies on every strong fuzzy detour. That 

is, ∆𝑠(𝑢, 𝑣) > 𝑒∆𝑠
(𝑤). Since 𝑒∆𝑠

(𝑣) ≥ ∆𝑠(𝑢, 𝑣), we conclude that 𝑒∆𝑠
(𝑣) > 𝑒∆𝑠

(𝑤). This contradicts the fact 

that 𝑣 is a strong fuzzy detour central node of 𝐺. 

 If every vertex of a fuzzy graph is a strong fuzzy detour central node, then the fuzzy graph is called 

self-centered. The following example explains this concept in detail. 

 

Fig. 4.1 Strong Fuzzy detour self-centered  fuzzy graph 

Example4.2 Let 𝑉 = {𝑎, 𝑏, 𝑐, 𝑑}. Define the fuzzy subsets 𝜎 of 𝑉and 𝜇 of 𝐸 = {𝑎𝑏, 𝑎𝑐, 𝑏𝑐, 𝑐𝑑, 𝑑𝑎} as follows: 

𝜎(𝑎) = 0.7, 𝜎(𝑏) = 0.8, 𝜎(𝑐) = 0.5, 𝜎(𝑑) = 0.6 and 𝜇(𝑎𝑏) = 𝜇(𝑎𝑐) = 𝜇(𝑏𝑐) = 𝜇(𝑐𝑑) = 𝜇(𝑑𝑎) = 0.4. 

∆𝑠(𝑎, 𝑏) = ∆𝑠(𝑏, 𝑐) = ∆𝑠(𝑐, 𝑑) = ∆𝑠(𝑑, 𝑎) 

= 7.5 and ∆𝑠(𝑎, 𝑐) = 5. 𝑒∆𝑠
(𝑎) = 𝑒∆𝑠

(𝑏) = 𝑒∆𝑠
(𝑐) = 𝑒∆𝑠

(𝑑) = 7.5. 𝑟𝑎𝑑∆𝑠
(𝐺) = 7.5 and 𝑑𝑖𝑎𝑚∆𝑠

(𝐺) = 7.5. 

therefore, 𝐶∆𝑠
(𝐺) = {𝑎, 𝑏, 𝑐, 𝑑}; that is, all edges of the fuzzy graph are strong fuzzy detour central nodes. Thus, 

𝐺 is strong fuzzy detour self-centered graph. 

 

5  Conclusions: 

 The idea of fuzzy detour 𝜇 – distance is introduced in fuzzy graphs having strong paths. The properties 

we have developed are analogous. This new approach may help to improve the facilities to areas which have 
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importance of public service. To conclude, we note that it is possible to make use of the wealth of fuzzy graph 

theory which includes significant applications to data structures and algorithms analysis. 
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